Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591802

RESUMO

The PAH gene encodes the hepatic enzyme phenylalanine hydroxylase (PAH), and its deficiency, known as phenylketonuria (PKU), leads to neurotoxic high levels of phenylalanine. PAH exon 11 is weakly defined, and several missense and intronic variants identified in patients affect the splicing process. Recently, we identified a novel intron 11 splicing regulatory element where U1snRNP binds, participating in exon 11 definition. In this work, we describe the implementation of an antisense strategy targeting intron 11 sequences to correct the effect of PAH mis-splicing variants. We used an in vitro assay with minigenes and identified splice-switching antisense oligonucleotides (SSOs) that correct the exon skipping defect of PAH variants c.1199+17G>A, c.1199+20G>C, c.1144T>C, and c.1066-3C>T. To examine the functional rescue induced by the SSOs, we generated a hepatoma cell model with variant c.1199+17G>A using CRISPR/Cas9. The edited cell line reproduces the exon 11 skipping pattern observed from minigenes, leading to reduced PAH protein levels and activity. SSO transfection results in an increase in exon 11 inclusion and corrects PAH deficiency. Our results provide proof of concept of the potential therapeutic use of a single SSO for different exonic and intronic splicing variants causing PAH exon 11 skipping in PKU.

2.
Hum Mol Genet ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520741

RESUMO

We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein. Homozygous Pah c.1066-11A mice, with a partially humanized intron 10 sequence with the variant, accurately recapitulate the splicing defect and present almost undetectable hepatic PAH activity. They exhibit fur hypopigmentation, lower brain and body weight and reduced survival. Blood and brain phenylalanine levels are elevated, along with decreased tyrosine, tryptophan and monoamine neurotransmitter levels. They present behavioral deficits, mainly hypoactivity and diminished social interaction, locomotor deficiencies and an abnormal hind-limb clasping reflex. Changes in the morphology of glial cells, increased GFAP and Iba1 staining signals and decreased myelinization are observed. Hepatic tissue exhibits nearly absent PAH protein, reduced levels of chaperones DNAJC12 and HSP70 and increased autophagy markers LAMP1 and LC3BII, suggesting possible coaggregation of mutant PAH with chaperones and subsequent autophagy processing. This PKU mouse model with a prevalent human variant represents a useful tool for pathophysiology research and for novel therapies development.

3.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474060

RESUMO

The pathophysiology of nonketotic hyperglycinemia (NKH), a rare neuro-metabolic disorder associated with severe brain malformations and life-threatening neurological manifestations, remains incompletely understood. Therefore, a valid human neural model is essential. We aimed to investigate the impact of GLDC gene variants, which cause NKH, on cellular fitness during the differentiation process of human induced pluripotent stem cells (iPSCs) into iPSC-derived astrocytes and to identify sustainable mechanisms capable of overcoming GLDC deficiency. We developed the GLDC27-FiPS4F-1 line and performed metabolomic, mRNA abundance, and protein analyses. This study showed that although GLDC27-FiPS4F-1 maintained the parental genetic profile, it underwent a metabolic switch to an altered serine-glycine-one-carbon metabolism with a coordinated cell growth and cell cycle proliferation response. We then differentiated the iPSCs into neural progenitor cells (NPCs) and astrocyte-lineage cells. Our analysis showed that GLDC-deficient NPCs had shifted towards a more heterogeneous astrocyte lineage with increased expression of the radial glial markers GFAP and GLAST and the neuronal markers MAP2 and NeuN. In addition, we detected changes in other genes related to serine and glycine metabolism and transport, all consistent with the need to maintain glycine at physiological levels. These findings improve our understanding of the pathology of nonketotic hyperglycinemia and offer new perspectives for therapeutic options.


Assuntos
Hiperglicinemia não Cetótica , Células-Tronco Pluripotentes Induzidas , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Glicina Desidrogenase (Descarboxilante)/genética , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Glicina , Serina
4.
Mol Ther Nucleic Acids ; 35(1): 102101, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204914

RESUMO

Pseudoexons are nonfunctional intronic sequences that can be activated by deep-intronic sequence variation. Activation increases pseudoexon inclusion in mRNA and interferes with normal gene expression. The PCCA c.1285-1416A>G variation activates a pseudoexon and causes the severe metabolic disorder propionic acidemia by deficiency of the propionyl-CoA carboxylase enzyme encoded by PCCA and PCCB. We characterized this pathogenic pseudoexon activation event in detail and identified hnRNP A1 to be important for normal repression. The PCCA c.1285-1416A>G variation disrupts an hnRNP A1-binding splicing silencer and simultaneously creates a splicing enhancer. We demonstrate that blocking this region of regulation with splice-switching antisense oligonucleotides restores normal splicing and rescues enzyme activity in patient fibroblasts and in a cellular model created by CRISPR gene editing. Interestingly, the PCCA pseudoexon offers an unexploited potential to upregulate gene expression because healthy tissues show relatively high inclusion levels. By blocking inclusion of the nonactivated wild-type pseudoexon, we can increase both PCCA and PCCB protein levels, which increases the activity of the heterododecameric enzyme. Surprisingly, we can increase enzyme activity from residual levels in not only patient fibroblasts harboring PCCA missense variants but also those harboring PCCB missense variants. This is a potential treatment strategy for propionic acidemia.

5.
Gene ; 893: 147902, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37839763

RESUMO

Next-generation sequencing has improved the diagnosis of inborn errors of metabolism, allowing rapid confirmation of cases detected by clinical/biochemical studies or newborn screening. The challenge, however, remains for establishing the pathogenicity of the identified variants, especially for novel missense changes or small in-frame deletions. In this work we report a propionic acidemia patient exhibiting a severe neonatal form with coma and hyperammonaemia. Genetic analysis identified the previously described pathogenic PCCB variant p.R512C in the maternal allele and two novel PCCB variants in cis in the paternal allele, p.G246del and p.S322F. Expression analysis in a eukaryotic system confirmed the deleterious effect of the novel missense variant and of the one amino acid deletion, as they both exhibited reduced protein levels and reduced or null PCC activity compared to the wild-type construct. Accordingly, the double mutant resulted in no residual activity. This study increases the knowledge of the genotype-phenotype correlations in the rare disease propionic acidemia and highlights the necessity of functional analysis of novel variants to understand their contribution to disease severity and to accurately classify their pathogenic status. In conclusion, two novel PCCB pathogenic variants have been identified, expanding the current mutational spectrum of propionic acidemia.


Assuntos
Carbono-Carbono Liases , Acidemia Propiônica , Humanos , Recém-Nascido , Carbono-Carbono Liases/genética , Mutação de Sentido Incorreto , Acidemia Propiônica/genética , Deleção de Sequência
6.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768524

RESUMO

Propionic acidemia (PA) disorder shows major involvement of the heart, among other alterations. A significant number of PA patients develop cardiac complications, and available evidence suggests that this cardiac dysfunction is driven mainly by the accumulation of toxic metabolites. To contribute to the elucidation of the mechanistic basis underlying this dysfunction, we have successfully generated cardiomyocytes through the differentiation of induced pluripotent stem cells (iPSCs) from a PCCB patient and its isogenic control. In this human cellular model, we aimed to examine microRNAs (miRNAs) profiles and analyze several cellular pathways to determine miRNAs activity patterns associated with PA cardiac phenotypes. We have identified a series of upregulated cardiac-enriched miRNAs and alterations in some of their regulated signaling pathways, including an increase in the expression of cardiac damage markers and cardiac channels, an increase in oxidative stress, a decrease in mitochondrial respiration and autophagy; and lipid accumulation. Our findings indicate that miRNA activity patterns from PA iPSC-derived cardiomyocytes are biologically informative and advance the understanding of the molecular mechanisms of this rare disease, providing a basis for identifying new therapeutic targets for intervention strategies.


Assuntos
Cardiomiopatias , Cardiopatias , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Acidemia Propiônica , Humanos , Acidemia Propiônica/genética , Acidemia Propiônica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiomiopatias/metabolismo , Diferenciação Celular/genética , Cardiopatias/metabolismo , Homeostase
7.
Nat Commun ; 13(1): 5212, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064721

RESUMO

Life-threatening hyperammonemia occurs in both inherited and acquired liver diseases affecting ureagenesis, the main pathway for detoxification of neurotoxic ammonia in mammals. Protein O-GlcNAcylation is a reversible and nutrient-sensitive post-translational modification using as substrate UDP-GlcNAc, the end-product of hexosamine biosynthesis pathway. Here we show that increased liver UDP-GlcNAc during hyperammonemia increases protein O-GlcNAcylation and enhances ureagenesis. Mechanistically, O-GlcNAcylation on specific threonine residues increased the catalytic efficiency for ammonia of carbamoyl phosphate synthetase 1 (CPS1), the rate-limiting enzyme in ureagenesis. Pharmacological inhibition of O-GlcNAcase, the enzyme removing O-GlcNAc from proteins, resulted in clinically relevant reductions of systemic ammonia in both genetic (hypomorphic mouse model of propionic acidemia) and acquired (thioacetamide-induced acute liver failure) mouse models of liver diseases. In conclusion, by fine-tuned control of ammonia entry into ureagenesis, hepatic O-GlcNAcylation of CPS1 increases ammonia detoxification and is a novel target for therapy of hyperammonemia in both genetic and acquired diseases.


Assuntos
Amônia , Carbamoil-Fosfato Sintase (Amônia) , Hiperamonemia , Ureia , Difosfato de Uridina , Acetilglucosamina , Amônia/metabolismo , Animais , Biocatálise , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Modelos Animais de Doenças , Glicosilação , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Mamíferos/metabolismo , Camundongos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acidemia Propiônica/genética , Acidemia Propiônica/metabolismo , Processamento de Proteína Pós-Traducional/genética , Ureia/metabolismo , Difosfato de Uridina/genética , Difosfato de Uridina/metabolismo
8.
Methods Mol Biol ; 2434: 167-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213016

RESUMO

The field of splice modulating RNA therapy has gained new momentum with FDA approved antisense-based drugs for several rare diseases. In vitro splicing assays with minigenes or patient-derived cells are commonly employed for initial preclinical testing of antisense oligonucleotides aiming to modulate splicing. However, minigenes do not include the full genomic context of the exons under study and patients' samples are not always available, especially if the gene is expressed solely in certain tissues (e.g. liver or brain). This is the case for specific inherited metabolic diseases such as phenylketonuria (PKU) caused by mutations in the liver-expressed PAH gene.Herein we describe the generation of mutation-specific hepatic cellular models of PKU using CRISPR/Cas9 system, which is a versatile and easy-to-use gene editing tool. We describe in detail the selection of the appropriate cell line, guidelines for design of RNA guides and donor templates, transfection procedures and growth and selection of single-cell colonies with the desired variant , which should result in the accurate recapitulation of the splicing defect.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Éxons/genética , Edição de Genes/métodos , Células Hep G2 , Humanos , Splicing de RNA
9.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503868

RESUMO

Propionic acidemia (PA), one of the most frequent life-threatening organic acidemias, is caused by mutations in either the PCCA or PCCB genes encoding both subunits of the mitochondrial propionyl-CoA carboxylase (PCC) enzyme. Cardiac alterations (hypertrophy, dilated cardiomyopathy, long QT) are one of the major causes of mortality in patients surviving the neonatal period. To overcome limitations of current cellular models of PA, we generated induced pluripotent stem cells (iPSCs) from a PA patient with defects in the PCCA gene, and successfully differentiated them into cardiomyocytes. PCCA iPSC-derived cardiomyocytes exhibited reduced oxygen consumption, an accumulation of residual bodies and lipid droplets, and increased ribosomal biogenesis. Furthermore, we found increased protein levels of HERP, GRP78, GRP75, SIG-1R and MFN2, suggesting endoplasmic reticulum stress and calcium perturbations in these cells. We also analyzed a series of heart-enriched miRNAs previously found deregulated in the heart tissue of a PA murine model and confirmed their altered expression. Our novel results show that PA iPSC-cardiomyocytes represent a promising model for investigating the pathological mechanisms underlying PA cardiomyopathies, also serving as an ex vivo platform for therapeutic evaluation.


Assuntos
Diferenciação Celular , Suscetibilidade a Doenças , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Acidemia Propiônica/etiologia , Acidemia Propiônica/metabolismo , Animais , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Metabolismo Energético , Expressão Gênica , Humanos , Camundongos , MicroRNAs , Miócitos Cardíacos/ultraestrutura , RNA Mensageiro
10.
Stem Cell Res ; 49: 102055, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128956

RESUMO

Propionic acidemia (PA) is an inherited metabolic disease caused by mutations in the PCCA and PCCB genes. We have previously generated an induced pluripotent stem cell (iPSC) line (UAMi004-A) from a PA patient with the c.1218_1231del14ins12 (p.Gly407Argfs*14) homozygous mutation in the PCCB gene. Here, we report the generation of the isogenic control in which the mutation was genetically corrected using CRISPR/Cas9 technology. Off-target editing presence was excluded and the iPSCs had typical embryonic stem cell-like morphology and normal karyotype that expressed pluripotency markers and maintained their in vitro differentiation potential.


Assuntos
Células-Tronco Pluripotentes Induzidas , Acidemia Propiônica , Sistemas CRISPR-Cas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metilmalonil-CoA Descarboxilase/genética , Mutação/genética , Acidemia Propiônica/genética , Tecnologia
11.
Transl Res ; 218: 43-56, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951825

RESUMO

Cardiac alterations (hypertrophic/dilated cardiomyopathy, and rhythm alterations) are one of the major causes of mortality and morbidity in propionic acidemia (PA), caused by the deficiency of the mitochondrial enzyme propionyl-CoA carboxylase (PCC), involved in the catabolism of branched-chain amino acids, cholesterol, and odd-chain fatty acids. Impaired mitochondrial oxidative phosphorylation has been documented in heart biopsies of PA patients, as well as in the hypomorphic Pcca-/-(A138T) mouse model, in the latter correlating with increased oxidative damage and elevated expression of cardiac dysfunction biomarkers atrial and brain natriuretic peptides (ANP and BNP) and beta-myosin heavy chain (ß-MHC). Here we characterize the cardiac phenotype in the PA mouse model by histological and echocardiography studies and identify a series of upregulated cardiac-enriched microRNAs (miRNAs) in the PA mouse heart, some of them also altered as circulating miRNAs in PA patients' plasma samples. In PA mice hearts, we show alterations in signaling pathways regulated by the identified miRNAs, which could be contributing to cardiac remodeling and dysfunction; notably, an activation of the mammalian target of rapamycin (mTOR) pathway and a decrease in autophagy, which are reverted by rapamycin treatment. In vitro studies in HL-1 cardiomyocytes indicate that propionate, the major toxic metabolite accumulating in the disease, triggers the increase in expression levels of miRNAs, BNP, and ß-MHC, concomitant with an increase in reactive oxygen species. Our results highlight miRNAs and signaling alterations in the PCC-deficient heart which may contribute to the development of PA-associated cardiomyopathy and provide a basis to identify new targets for therapeutic intervention.


Assuntos
Cardiomiopatias/genética , MicroRNAs/genética , Acidemia Propiônica/genética , Animais , Cardiomiopatias/complicações , Cardiomiopatias/fisiopatologia , Linhagem Celular , Ecocardiografia , Humanos , Camundongos , Acidemia Propiônica/complicações , Acidemia Propiônica/fisiopatologia , Transdução de Sinais
12.
Front Cardiovasc Med ; 7: 617451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415129

RESUMO

Clinical observations and experimental studies have determined that systemic acid-base disturbances can profoundly affect the heart. A wealth of information is available on the effects of altered pH on cardiac function but, by comparison, much less is known about the actions of the organic anions that accumulate alongside H+ ions in acidosis. In the blood and other body fluids, these organic chemical species can collectively reach concentrations of several millimolar in severe metabolic acidoses, as in the case of inherited organic acidemias, and exert powerful biological actions on the heart that are not intuitive to predict. Indeed, cardiac pathologies, such as cardiomyopathy and arrhythmia, are frequently reported in organic acidemia patients, but the underlying pathophysiological mechanisms are not well established. Research efforts in the area of organic anion physiology have increased dramatically in recent years, particularly for propionate, which accumulates in propionic acidemia, one of the commonest organic acidemias characterized by a high incidence of cardiac disease. This Review provides a comprehensive historical overview of all known organic acidemias that feature cardiac complications and a state-of-the-art overview of the cardiac sequelae observed in propionic acidemia. The article identifies the most promising candidates for molecular mechanisms that become aberrantly engaged by propionate anions (and its metabolites), and discusses how these may result in cardiac derangements in propionic acidemia. Key clinical and experimental findings are considered in the context of potential therapies in the near future.

14.
Stem Cell Res ; 39: 101503, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31349202

RESUMO

A human induced pluripotent stem cell (iPSC) line was generated from fibroblasts of a patient with nonketotic hyperglycinemia bearing the biallelic changes c.1742C > G (p.Pro581Arg) and c.2368C > T (p.Arg790Trp) in the GLDC gene. Reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC were delivered using a non-integrative method based on the Sendai virus. Once established, iPSCs have shown full pluripotency, differentiation capacity and genetic stability. This cellular model provides a good resource for disease modeling and drug discovery.


Assuntos
Hiperglicinemia não Cetótica/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Humanos , Recém-Nascido , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
15.
Stem Cell Res ; 38: 101469, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31132581

RESUMO

A human induced pluripotent stem cell (iPSC) line was generated from fibroblasts of a patient with propionic acidemia that has a homozygous mutation (c.1218_1231del14ins12 (p.G407 fs)) in the PCCB gene. Reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC were delivered using a non-integrative method based on the Sendai virus. Once established, iPSCs have shown full pluripotency, differentiation capacity and genetic stability. The generated iPSC line represents a useful tool to study the pathomechanisms underlying the deficiency.


Assuntos
Homozigoto , Células-Tronco Pluripotentes Induzidas , Metilmalonil-CoA Descarboxilase , Mutação , Acidemia Propiônica , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/patologia , Fator 4 Semelhante a Kruppel , Metilmalonil-CoA Descarboxilase/genética , Metilmalonil-CoA Descarboxilase/metabolismo , Acidemia Propiônica/enzimologia , Acidemia Propiônica/genética , Acidemia Propiônica/patologia
16.
Mol Genet Metab ; 125(3): 266-275, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30274917

RESUMO

Propionic acidemia (PA) is caused by mutations in the PCCA and PCCB genes, encoding α and ß subunits, respectively, of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). Up to date, >200 pathogenic mutations have been identified, mostly missense defects. Genetic analysis in PA patients referred to the laboratory for the past 15 years identified 20 novel variants in the PCCA gene and 14 in the PCCB gene. 21 missense variants were predicted as probably disease-causing by different bioinformatics algorithms. Structural analysis in the available 3D model of the PCC enzyme indicated potential instability for most of them. Functional analysis in a eukaryotic system confirmed the pathogenic effect for the missense variants and for one amino acid deletion, as they all exhibited reduced or null PCC activity and protein levels compared to wild-type constructs. PCCB variants p.E168del, p.Q58P and p.I460T resulted in medium-high protein levels and no activity. Variants p.R230C and p.C712S in PCCA, and p.G188A, p.R272W and p.H534R in PCCB retained both partial PCC activity and medium-high protein levels. Available patients-derived fibroblasts carriers of some of these mutations were grown at 28 °C or 37 °C and a slight increase in PCC activity or protein could be detected in some cases at the folding-permissive conditions. Examination of available clinical data showed correlation of the results of the functional analysis with disease severity for most mutations, with some notable exceptions, confirming the notion that the final phenotypic outcome in PA is not easily predicted.


Assuntos
Predisposição Genética para Doença , Metilmalonil-CoA Descarboxilase/genética , Acidemia Propiônica/genética , Relação Estrutura-Atividade , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Metilmalonil-CoA Descarboxilase/química , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mutação de Sentido Incorreto/genética , Triagem Neonatal , Acidemia Propiônica/patologia , Conformação Proteica , Dobramento de Proteína , Adulto Jovem
17.
Oxid Med Cell Longev ; 2018: 1246069, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743968

RESUMO

Inborn errors of metabolism (IEMs) are a group of monogenic disorders characterized by dysregulation of the metabolic networks that underlie development and homeostasis. Emerging evidence points to oxidative stress and mitochondrial dysfunction as major contributors to the multiorgan alterations observed in several IEMs. The accumulation of toxic metabolites in organic acidurias, respiratory chain, and fatty acid oxidation disorders inhibits mitochondrial enzymes and processes resulting in elevated levels of reactive oxygen species (ROS). In other IEMs, as in homocystinuria, different sources of ROS have been proposed. In patients' samples, as well as in cellular and animal models, several studies have identified significant increases in ROS levels along with decreases in antioxidant defences, correlating with oxidative damage to proteins, lipids, and DNA. Elevated ROS disturb redox-signaling pathways regulating biological processes such as cell growth, differentiation, or cell death; however, there are few studies investigating these processes in IEMs. In this review, we describe the published data on mitochondrial dysfunction, oxidative stress, and impaired redox signaling in branched-chain amino acid disorders, other organic acidurias, and homocystinuria, along with recent studies exploring the efficiency of antioxidants and mitochondria-targeted therapies as therapeutic compounds in these diseases.


Assuntos
Homocistinúria/metabolismo , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Homeostase , Humanos , Terapia de Alvo Molecular , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
18.
Stem Cell Res ; 23: 173-177, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28925364

RESUMO

Human induced pluripotent stem cell (iPSC) line was generated from fibroblasts of a patient with propionic acidemia carrying mutations in the PCCA gene: c.1899+4_1899+7delAGTA; p.(Cys616_Val633del) and c.1430--?_1643+?del; p.(Gly477Glufs*9). Reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC were delivered using a non-integrative method based on the Sendai virus. Once established, iPSCs have shown full pluripotency, differentiation capacity and genetic stability.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/patologia , Metilmalonil-CoA Descarboxilase/genética , Acidemia Propiônica/patologia , Sequência de Bases , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel , Reprodutibilidade dos Testes
19.
Mol Genet Metab ; 122(1-2): 43-50, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28774709

RESUMO

Oxidative stress contributes to the pathogenesis of propionic acidemia (PA), a life threatening disease caused by the deficiency of propionyl CoA-carboxylase, in the catabolic pathway of branched-chain amino acids, odd-number chain fatty acids and cholesterol. Patients develop multisystemic complications including seizures, extrapyramidal symptoms, basal ganglia deterioration, pancreatitis and cardiomyopathy. The accumulation of toxic metabolites results in mitochondrial dysfunction, increased reactive oxygen species and oxidative damage, all of which have been documented in patients' samples and in a hypomorphic mouse model. Here we set out to investigate whether treatment with a mitochondria-targeted antioxidant, MitoQ, or with the natural polyphenol resveratrol, which is reported to have antioxidant and mitochondrial activation properties, could ameliorate the altered redox status and its functional consequences in the PA mouse model. The results show that oral treatment with MitoQ or resveratrol decreases lipid peroxidation and the expression levels of DNA repair enzyme OGG1 in PA mouse liver, as well as inducing tissue-specific changes in the expression of antioxidant enzymes. Notably, treatment decreased the cardiac hypertrophy marker BNP that is found upregulated in the PA mouse heart. Overall, the results provide in vivo evidence to justify more in depth investigations of antioxidants as adjuvant therapy in PA.


Assuntos
Antioxidantes/uso terapêutico , Compostos Organofosforados/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Acidemia Propiônica/tratamento farmacológico , Estilbenos/uso terapêutico , Ubiquinona/análogos & derivados , Administração Oral , Aminoácidos de Cadeia Ramificada , Animais , Antioxidantes/administração & dosagem , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Compostos Organofosforados/administração & dosagem , Acidemia Propiônica/fisiopatologia , Resveratrol , Estilbenos/administração & dosagem , Ubiquinona/administração & dosagem , Ubiquinona/uso terapêutico
20.
Sci Rep ; 7(1): 5727, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720782

RESUMO

miRNome expression profiling was performed in a mouse model of propionic acidemia (PA) and in patients' plasma samples to investigate the role of miRNAs in the pathophysiology of the disease and to identify novel biomarkers and therapeutic targets. PA is a potentially lethal neurometabolic disease with patients developing neurological deficits and cardiomyopathy in the long-term, among other complications. In the PA mouse liver we identified 14 significantly dysregulated miRNAs. Three selected miRNAs, miR-34a-5p, miR-338-3p and miR-350, were found upregulated in brain and heart tissues. Predicted targets involved in apoptosis, stress-signaling and mitochondrial function, were inversely found down-regulated. Functional analysis with miRNA mimics in cellular models confirmed these findings. miRNA profiling in plasma samples from neonatal PA patients and age-matched control individuals identified a set of differentially expressed miRNAs, several were coincident with those identified in the PA mouse, among them miR-34a-5p and miR-338-3p. These two miRNAs were also found dysregulated in childhood and adult PA patients' cohorts. Taken together, the results reveal miRNA signatures in PA useful to identify potential biomarkers, to refine the understanding of the molecular mechanisms of this rare disease and, eventually, to improve the management of patients.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/análise , MicroRNAs/sangue , Acidemia Propiônica/patologia , Acidemia Propiônica/fisiopatologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Recém-Nascido , Fígado/patologia , Camundongos , Miocárdio/patologia , Plasma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...